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Abstract—In human society, a meeting between two or more 

people is a common occurrence. A modified Dijkstra’s algorithm 

which results in data of all shortest paths from each vertex to every 

other vertex in a strongly connected, weighted, directed graph may 

be used to determine an optimal meeting point, where cost is 

minimized. Two types of cost minimizations that will be studied 

include total cost minimization and maximum cost minimization. 
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I.   INTRODUCTION 

Human beings are social creatures. Therefore, a meeting 

between two or more people is a common occurrence in human 

society. By definition, a meeting is a gathering of two or more 

people that has been convened for the purpose of achieving a 

common goal through verbal interaction, such as sharing 

information or reaching an agreement [1]. Meetings happen for 

various reasons, such as to discuss work, find a suitable romantic 

partner, or simply to have fun together. However, there is always 

one thing in common between all meetings taking place in real 

life, which is a meeting point. In order to get together, people 

have to decide where to meet.  

Deciding a suitable meeting point is usually done by a vague 

estimation of how far everyone is, without any mathematical 

basis. However, there are certain instances when efficiency or 

cost must be scrutinized. In these cases, there are two kinds of 

cost minimization. The first one is to pick a place where the total 

cost would be minimum, and the second is to pick a place where 

the maximum cost would be minimum [2]. The first may be 

used, for instance, when the total cost of travel is covered by a 

single person or organization. The second would be a better 

choice to ensure that no single person would travel too far. 

This problem can be represented by a graph, where vertices 

represent places and edges represent routes. To illustrate the 

problem efficiently, the type of graph used is a strongly 

connected, weighted, directed graph. Thus, the implementation 

of Dijkstra’s algorithm to determine the best routes everyone 

should travel is possible. Furthermore, to make things more 

efficient, there will be slight modifications to the classic 

Dijkstra’s algorithm, where the resulting calculation would 

include all shortest paths from each vertex to every other vertex 

in the graph. 

II.  GRAPH THEORY 

A. Graph 

Graphs are defined as mathematical structures which consist 

of a set of vertices (also known as nodes or points) connected by 

edges (also known as links or lines). 

Formally [3], a graph can be written as G = (V, E) where: 

- V is a set of vertices (also called nodes or points), and 

- E is a set of edges (also called links or lines), which are 

unordered pairs of vertices (that is, an edge is associated with 

two distinct vertices). 

 
Fig. 1. Example of a simple graph. Source: 

https://www.geeksforgeeks.org/mathematics-graph-theory-

basics/ 

 

In this paper, places which serve as possible meeting points 

are represented by vertices, and routes connecting these places 

are represented by weighted edges. 

 

B. Directed Graph 

Graphs can be further classified into directed or undirected 

graphs. A directed graph or a digraph is a graph in which edges 

have orientations.  

An edge directed from vertex A to B has a tail and a head, 

where A is the tail of the edge and B the head of the edge. A and 

B are called the endpoints of the edge. In a directed graph, a 

loop, which is an edge directed from a vertex to itself, is not 

allowed [3]. 

 
Fig. 2. Example of a directed graph. Source: 

https://en.wikipedia.org/wiki/Graph_theory#/media/File:Direct

ed.svg 

https://www.geeksforgeeks.org/mathematics-graph-theory-basics/
https://www.geeksforgeeks.org/mathematics-graph-theory-basics/
https://en.wikipedia.org/wiki/Graph_theory#/media/File:Directed.svg
https://en.wikipedia.org/wiki/Graph_theory#/media/File:Directed.svg
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As opposed to undirected graphs, representing the problem 

discussed in this paper with directed graphs is more convenient 

and appropriate, as the route from place A to place B may differ 

from the route from place B to place A. With directed graphs, 

both routes may be represented with different edges with 

different orientations, so as not to confuse the two. This setting 

is not possible using an undirected graph. 

 

C. Weighted Graph 

Graphs can also be classified by their weight. A weighted 

graph is categorized by the existence of a numerical weight in 

each edge. These weights may represent various things such as 

the cost, length, or preference of each edge. A weighted graph is 

therefore a special type of labeled graph in which the labels are 

numbers, usually positive but may also be negative [4].  

 
Fig. 3. Example of a weighted graph. Source: 

https://algorithms.tutorialhorizon.com/weighted-graph-

implementation-java/ 

 

In this paper, the weights assigned to each edge portray the 

distance or the cost which is needed to travel the road between 

two places. This weight is crucial since the goal of the algorithm 

is to find a place where the cost of travel for all parties is 

minimized. 

 

C. Graph Terminology 

There are a few graph terminologies used in this paper to 

describe graphs, which are listed below [5]. 

1. Adjacency 

Two vertices are said to be adjacent when they are 

directly connected. 

2. Incidence 

For any edge e = (v1, v2), e is incident with vertex v1, or e 

is incident with vertex v2. 

3. Isolated Vertex 

An isolated vertex is any vertex which has no incident 

edge. 

 
Fig. 4. Vertex 5 is an isolated vertex. Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

020-2021/Graf-2020-Bagian1.pdf 

4. Null Graph (Empty Graph) 

A graph is said to be a null graph when it is comprised 

of an empty set. 

 
Fig. 5. Example of a null graph. Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

020-2021/Graf-2020-Bagian1.pdf 

 

5. Degree 

The degree of a certain vertex is the count of incident 

edges of the said vertex. 

6. Path 

A path from starting vertex v0 to target vertex vn is a 

sequence of alternating vertices and edges such that each 

successive vertex is connected by the edge. The length of 

a path is the number of edges in the path. 

7. Cycle (Circuit) 

A cycle or a circuit is a path that starts and ends with the 

same vertex. 

8. Connectedness 

Two vertices v0 and vn is said to be connected if there is a 

path from v0 to vn. A graph is connected when for every 

pair of vertices vi and vj, there exists a path from vi to vj. 

If not, the graph is called a disconnected graph. In a 

directed graph, there are two kinds of connectedness: 

weakly connected and strongly connected. Two vertices 

u and v are called strongly connected if there exists a path 

from u to v and also a path from v to u. A connected 

directed graph is called strongly connected when all pairs 

of vertices are strongly connected. Otherwise, the graph 

is weakly connected. 

  
Fig. 6. A strongly connected graph (left) and a weakly 

connected graph (right). Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

020-2021/Graf-2020-Bagian1.pdf 

 

9. Subgraph 

A Subgraph is a subset of vertices and edges in a graph. 

10. Spanning Subgraph 

A Spanning subgraph is a special type of subgraph which 

consists of all the vertices. 

https://algorithms.tutorialhorizon.com/weighted-graph-implementation-java/
https://algorithms.tutorialhorizon.com/weighted-graph-implementation-java/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
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D. Graph Representation 

A graph may be represented in various ways, three of which 

are listed below [6]. 

1. Adjacency Matrix 

A = [aij], 

1, if vertex i and j are adjacent 

aij = { 

0, if vertex i and j are not adjacent 

 

 
Fig. 7. Examples of adjacency matrices. Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

020-2021/Graf-2020-Bagian2.pdf 

 

2. Incidency Matrix 

A = [aij], 

1, if vertex i and edge j are incident 

aij = { 

0, if vertex i and edge j are not incident 

 
Fig. 8. Examples of incidency matrix. Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

020-2021/Graf-2020-Bagian2.pdf 

 

3. Adjacency List 

For each vertex i, all vertices which are adjacent to i are 

listed. 

 
Fig. 9. Examples of adjacency list. Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

020-2021/Graf-2020-Bagian2.pdf 

 

III.   DIJKSTRA’S ALGORITHM 

Created by computer scientist Edsger W. Dijkstra in 1956, 

Dijkstra’s algorithm is an algorithm used to calculate the 

shortest or lowest-cost path between two points in a weighted 

graph. This algorithm is designed for weighted graphs which 

edges have non-negative weights. Dijkstra’s algorithm is widely 

used in network routing protocols and geographical maps 

[7][8][9]. 

Even though the original purpose of the algorithm is to 

determine the shortest path from one vertex to another, 

Dijkstra’s algorithm, as a whole, automatically calculates the 

cheapest paths from one vertex to every other vertex in the graph 

[10].  

Dijkstra’s algorithm works by first determining the initial or 

starting vertex and setting it as an anchor. The algorithm works 

in these steps. 

1. All vertices are marked unvisited and stored in a set 

called the unvisited set. 

2. Every vertex is assigned a tentative distance value. The 

distance from the starting vertex to itself is set to zero, 

whereas to every other vertex is set to infinity. The 

tentative distance of a vertex v is the length of the 

shortest path between the starting vertex and the vertex 

v calculated so far. Initially, there are no known paths 

from the starting vertex to any other vertex. Therefore, 

the tentative distances of all vertices (except for the 

starting vertex itself) are set to infinity. 

3. The algorithm begins by visiting the starting vertex and 

marking it as the current vertex.  

4. For the current vertex, all its unvisited adjacent 

vertices’ tentative distances are calculated through the 

current node. The newly calculated tentative distance 

is then compared to the current assigned tentative 

distance. Then, the algorithm keeps the smaller of the 

two.  

5. After all unvisited adjacent vertices are evaluated, the 

current node is marked as visited and removed from the 

unvisited set. A visited vertex will not be checked 

again. 

6. The vertex which is marked with the smallest tentative 

distance is selected from the unvisited set and steps 4-

6 are repeated until a stop condition is met. 

7. There are two conditions when the algorithm stops 

depending on the goal: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf
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1. When calculating the shortest path between 

one vertex to another, the algorithm stops 

when the destination vertex has been reached. 

2. When calculating the shortest path between 

one vertex and all other vertices, the algorithm 

stops when the smallest tentative distance 

among the vertices in the unvisited set is 

infinity. This means that there is no 

connection between the initial vertex and the 

remaining unvisited vertices. 

8. When the stop condition is met, the algorithm would 

have returned the shortest paths between the starting 

point and every other vertex in the graph (unless the 

goal is to find the shortest path between one vertex with 

another, which in this case the algorithm is stopped 

early). 

Fig. 10. A flowchart of Dijkstra’s algorithm. Source: 

https://www.researchgate.net/figure/Improved-Dijkstra-

algorithm-flowchart_fig3_348091761 

 

IV.   REPRESENTATION OF THE OPTIMAL MEETING 

POINT PROBLEM USING WEIGHTED DIRECTED GRAPH 

Suppose there are five people living in five different cities 

(Atlanta, Boston, Chicago, Denver, and El Paso) who want to 

decide on a city to meet with the minimal plane ticket cost. The 

ticket costs are listed below. 

 

Table 1. Plane ticket prices for this scenario 

From To Price 

Atlanta Boston $190 

Atlanta Chicago $250 

Boston Atlanta $200 

Boston Chicago $80 

Boston Denver $150 

Chicago Boston $90 

Chicago Denver $80 

Denver El Paso $120 

El Paso Chicago $120 

El Paso Denver $130 

 

Each city will be represented by a vertex, while the costs of 

plane tickets will be represented by the weight of directed edges 

between the vertices. 

 
Fig. 11. A graph representation of plane ticket costs. Source: 

Author 

 

This graph will then be represented in a format that can be 

read by the program. Because the point of interest is the inbound 

edges, the representation should revolve around the inbound 

edges rather than the outbound edges like the classic Dijkstra 

does. The representation below is written in the form of an 

adjacency list.  

Atlanta : Boston, 200 

Boston : Atlanta, 190; Chicago, 90 

Chicago : Atlanta, 250; Boston, 80; El Paso, 120 

Denver : Boston, 150; Chicago, 40; El Paso, 130 

El Paso : Denver, 120 

This list means there is one inbound edge going to Atlanta 

from Boston that costs $200, two inbound edges to Boston from 

Atlanta and Chicago, and so on. 

 

V.   THE USE OF MODIFIED DIJKSTRA’S ALGORITHM IN 

CALCULATING AN OPTIMAL MEETING POINT 

The first step in determining the optimal meeting point of a 

graph is to ensure the connectivity of the graph. A suitable 

meeting point can only be obtained if the resulting graph 

representation is strongly connected, which means people can 

travel from one city to another. If the resulting graph is not 

connected or weakly connected, no suitable meeting point can 

be derived, and the program terminates. The above example is a 

strongly connected graph. 

Every vertex is then assigned a tentative price value, which is 

listed in the table below. The first row represents the initial city, 

and the first column represents the destination city. The tentative 

price value assigned to any city from itself is zero, while the 

tentative price value to any city from all other cities are infinity. 

 

 

https://www.researchgate.net/figure/Improved-Dijkstra-algorithm-flowchart_fig3_348091761
https://www.researchgate.net/figure/Improved-Dijkstra-algorithm-flowchart_fig3_348091761
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Table 2. Initial tentative distance value 

 Atlanta Boston Chicago Denver El Paso 

Atlanta 0 ∞ ∞ ∞ ∞ 

Boston ∞ 0 ∞ ∞ ∞ 

Chicago ∞ ∞ 0 ∞ ∞ 

Denver ∞ ∞ ∞ 0 ∞ 

El Paso ∞ ∞ ∞ ∞ 0 

 

Next, an arbitrary starting point is chosen. In this example, 

Atlanta shall be picked as the starting city. Like in classic 

Dijkstra’s algorithm, the starting city is first set to be the current 

city and marked visited. 

Unvisited cities need to be kept track. For efficiency, a 

priority queue may be used in code since the next visited city is 

the city cheapest to the visited cities. 

For each time a city is visited, all inbound edges are inspected 

and compared to the list of cheapest prices which has already 

been discovered. 

In the first step, the cheapest price to Atlanta from Boston is 

discovered, which is $200. This price is added to the tentative 

price table and Boston is added to the unvisited cities priority 

queue. 

 
Fig. 12. Step 1: Atlanta. Source: Author 

 

Table 3. Step 1: Atlanta 

 Atlanta Boston Chicago Denver El Paso 

Atlanta 0 200 ∞ ∞ ∞ 

Boston ∞ 0 ∞ ∞ ∞ 

Chicago ∞ ∞ 0 ∞ ∞ 

Denver ∞ ∞ ∞ 0 ∞ 

El Paso ∞ ∞ ∞ ∞ 0 

 

After all adjacent cities have been checked, in this case only 

Boston, the algorithm moves on to the next unvisited city. 

Checking the unvisited cities queue, the next destination would 

be Boston. 

After marking Boston as visited, the inbound edges are 

checked. Boston has two inbound edges, which are from Atlanta 

($190) and from Chicago ($90). These prices are still the 

cheapest to Boston, so they are added to the cheapest prices 

table, replacing the infinity marks. 

In this modified algorithm, Atlanta should also be taken into 

account. Chicago can get to Atlanta through Boston. Therefore, 

Chicago’s price is calculated. The price to Atlanta from Chicago 

through Boston is $90 + $190, which is $290. Comparing this 

value to the value in the table (infinity), this value is cheaper. 

Therefore, $290 is also updated as the price to Atlanta from 

Chicago. This marks the end of step 2. 

 
Fig. 13. Step 2: Boston. Source: Author 

 

Table 4. Step 2: Boston 

 Atlanta Boston Chicago Denver El Paso 

Atlanta 0 200 290 ∞ ∞ 

Boston 190 0 90 ∞ ∞ 

Chicago ∞ ∞ 0 ∞ ∞ 

Denver ∞ ∞ ∞ 0 ∞ 

El Paso ∞ ∞ ∞ ∞ 0 

 

Again, the unvisited cities queue is checked. There is one 

discovered but unvisited city, which is Chicago. The algorithm 

then moves on to Chicago. 

Similar to the first and second steps, all inbound edges to 

Chicago are examined. In this case, there are three inbound 

edges, which are from Atlanta ($250), Boston ($80), and El Paso 

($120). All prices through Chicago are calculated and the 

cheapest prices table is updated. 

 
Fig. 14. Step 3: Chicago. Source: Author 
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Table 5. Step 3: Chicago 

 Atlanta Boston Chicago Denver El Paso 

Atlanta 0 200 290 ∞ 410 

Boston 190 0 90 ∞ 210 

Chicago 250 80 0 ∞ 120 

Denver ∞ ∞ ∞ 0 ∞ 

El Paso ∞ ∞ ∞ ∞ 0 

 

The next city to visit is El Paso. There is only one inbound 

edge, which is from Denver and costs $210. All prices through 

El Paso are calculated and compared with the values in the 

cheapest prices table. If any is found to be cheaper, the table is 

updated. 

 
Fig. 15. Step 4: El Paso. Source: Author 

 

Table 6. Step 4: El Paso 

 Atlanta Boston Chicago Denver El Paso 

Atlanta 0 200 290 530 410 

Boston 190 0 90 330 210 

Chicago 250 80 0 240 120 

Denver ∞ ∞ ∞ 0 ∞ 

El Paso ∞ ∞ ∞ 120 0 

 

The last unvisited city in this case is Denver. Checking all 

three inbound edges, the cheapest prices table is updated. 

 
Fig. 16. Step 5: Denver. Source: Author 

Table 7. Step 5: Denver 

 Atlanta Boston Chicago Denver El Paso 

Atlanta 0 200 290 530 410 

Boston 190 0 90 330 210 

Chicago 250 80 0 240 120 

Denver ∞ 150 40 0 130 

El Paso ∞ ∞ ∞ 120 0 

 

Since all cities have been visited, the first loop has been 

completed. In the classic Dijkstra’s algorithm, the program 

would have stopped here. However, as apparent from the table 

of cheapest prices that has been accumulated, some of the cells 

have not been filled yet (the value is still infinity) even though 

it is known that each vertex has at least a single path to any other 

vertex since the graph has been established as a strongly 

connected graph. 

To fill in the missing cells as well as update the current 

cheapest prices table with any path that will be discovered to be 

cheaper, the program loops one more time with the same order 

as the first loop (Atlanta, Boston, Chicago, El Paso, Denver). 

The comparison algorithm is also the same. The resulting table 

is shown below. 

 

Table 8. Final result 

 Atlanta Boston Chicago Denver El Paso 

Atlanta 0 200 290 530 410 

Boston 190 0 90 330 210 

Chicago 250 80 0 240 120 

Denver 290 120 40 0 130 

El Paso 410 240 160 120 0 

 

After all cheapest paths between every vertex are known, the 

calculation to determine the optimal meeting point can begin. 

There are two types of minimizing cost that is being studied 

in this paper. The first is to determine the optimal meeting point 

based on the city that has the minimum total cost from all other 

cities, and the second one is to decide based on the minimum 

maximum-cost of each city, so that no one person should travel 

too expensively. 

In the first method, the costs from each city are summed and 

compared. The calculated total costs to meet in each city are 

listed below. 

Atlanta : $1,430 

Boston : $820 

Chicago : $690 

Denver : $580 

El Paso : $930 

Therefore, using the first method, the most suitable meeting 

point would be Denver, with a total cost of $580. 

The second method proves to be simpler. The only thing 

needed to be done is to compare the maximum costs of each city, 

which are listed below. 

Atlanta : $530 

Boston : $330 

Chicago : $250 

Denver : $290 

El Paso : $410 

The resulting optimal meeting point calculated using the 
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second method differs from the first one, as the cost from 

Atlanta to Denver is too expensive. Therefore, Chicago is the 

best choice if no one person should travel too expensively. The 

maximum cost needed to travel to Chicago is $250, which is the 

cost from Atlanta to Chicago. 

 

VI.   CONCLUSION 

A modification to the classic Dijkstra’s algorithm could be 

used to determine an optimal meeting point in a weighted 

directed graph. However, to use this modification, the graph 

must be a strongly connected graph, a precondition which does 

not exist in the classic Dijkstra’s algorithm. 

The modification involves checking the shortest path from all 

vertices instead of just one vertex for every pass. In code, a 

nested loop may be utilized to achieve this. In addition to this, a 

second loop similar to the first must be completed in order to 

complete the check after all vertices are visited. 

The result of this modification is a set of data of all known 

shortest paths from each vertex to every other vertex, which can 

be used in a variety of schemes, not only to determine an optimal 

meeting point. 

 

VII.   APPENDIX 

The following is a python code of the modified Dijkstra’s 

algorithm used in this paper. The full code may be accessed from 

https://github.com/FelineJTD/Optimal-Meeting-Point-using-

Dijkstras-Algorithm. 

def modifiedDijkstra(vertices, start_vertex): 

  # a function that requires a vertices 

(dictionary) and a start_vertex (string) 

  # and returns cheapest_costs (dictionary) 

and previous_stopover_vertex (dictionary) 

  # through modified Dijkstra's algorithm 

which calculates all cheapest routes 

  # to every city from every city (or vice 

versa, depending on the vertices data) 

 

  # variables to be returned 

  cheapest_costs = {} 

  previous_stopover_vertex = {} 

  # variables to hold temporary states while 

Dijkstra runs 

  unvisited_vertices = PriorityQueue() # a 

priority queue, to be used in initial loop 

  revisit_vertices = [] # a queue, containing 

the same elements with the same order, to be 

used in secondary loop 

  visited_vertices = {} 

 

  # enqueue 

  unvisited_vertices.insert(start_vertex) 

 

  # initial loop 

  while (not unvisited_vertices.isEmpty()): 

    # initiation 

    # dequeue 

    curr_vertex = unvisited_vertices.delete() 

    revisit_vertices.append(curr_vertex) 

 

    cheapest_costs[curr_vertex] = {} 

    previous_stopover_vertex[curr_vertex] = {} 

    cheapest_costs[curr_vertex][curr_vertex] = 

0 

    visited_vertices[curr_vertex] = True 

 

    for adj_vertex, price in 

vertices[curr_vertex].items(): # iterate each 

adj vertices 

      # add vertex to queues if not yet 

visited 

      if (adj_vertex not in visited_vertices): 

        unvisited_vertices.insert(adj_vertex) 

 

      for vv in visited_vertices.keys(): 

        try: 

          # if there is a cheapest cost 

through curr_vertex 

          price_through_current_vertex = 

cheapest_costs[vv][curr_vertex] + price 

          try: 

            # compare the prices if there is 

an existing one 

            if(cheapest_costs[vv][adj_vertex] 

> price_through_current_vertex): 

              cheapest_costs[vv][adj_vertex] = 

price_through_current_vertex 

              previous_stopover_vertex[vv][adj

_vertex] = curr_vertex 

          except: 

            # price not yet initialized 

            cheapest_costs[vv][adj_vertex] = 

price_through_current_vertex 

            previous_stopover_vertex[vv][adj_v

ertex] = curr_vertex 

        except: 

          pass 

     

  # revisiting vertices 

  # this secondary loop is important so that 

all vertices 'visits' all vertices, currently 

only the start_vertex has done so 

https://github.com/FelineJTD/Optimal-Meeting-Point-using-Dijkstras-Algorithm
https://github.com/FelineJTD/Optimal-Meeting-Point-using-Dijkstras-Algorithm


Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022 

 

  for p in range(len(revisit_vertices)): 

    curr_vertex = revisit_vertices[p] 

    for q in range(p+1,len(revisit_vertices)): 

      vv = revisit_vertices[q] 

      for adj_vertex, price in 

vertices[revisit_vertices[p]].items(): # 

iterate each adj vertices 

        try: 

          price_through_current_vertex = 

cheapest_costs[vv][curr_vertex] + price 

          try: 

            if(cheapest_costs[vv][adj_vertex] 

> price_through_current_vertex): 

              cheapest_costs[vv][adj_vertex] = 

price_through_current_vertex 

              previous_stopover_vertex[vv][adj

_vertex] = curr_vertex 

          except: 

            cheapest_costs[vv][adj_vertex] = 

price_through_current_vertex 

            previous_stopover_vertex[vv][adj_v

ertex] = curr_vertex 

        except: 

          pass 

 

  return(cheapest_costs, 

previous_stopover_vertex) 
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