
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

Calculating Optimal Meeting Point using Modified

Dijkstra’s Algorithm

Felicia Sutandijo - 135200501

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113520050@std.stei.itb.ac.id

Abstract—In human society, a meeting between two or more

people is a common occurrence. A modified Dijkstra’s algorithm

which results in data of all shortest paths from each vertex to every

other vertex in a strongly connected, weighted, directed graph may

be used to determine an optimal meeting point, where cost is

minimized. Two types of cost minimizations that will be studied

include total cost minimization and maximum cost minimization.

Keywords—optimal meeting point, Dijkstra’s algorithm,

weighted graph, graph theory.

I. INTRODUCTION

Human beings are social creatures. Therefore, a meeting

between two or more people is a common occurrence in human

society. By definition, a meeting is a gathering of two or more

people that has been convened for the purpose of achieving a

common goal through verbal interaction, such as sharing

information or reaching an agreement [1]. Meetings happen for

various reasons, such as to discuss work, find a suitable romantic

partner, or simply to have fun together. However, there is always

one thing in common between all meetings taking place in real

life, which is a meeting point. In order to get together, people

have to decide where to meet.

Deciding a suitable meeting point is usually done by a vague

estimation of how far everyone is, without any mathematical

basis. However, there are certain instances when efficiency or

cost must be scrutinized. In these cases, there are two kinds of

cost minimization. The first one is to pick a place where the total

cost would be minimum, and the second is to pick a place where

the maximum cost would be minimum [2]. The first may be

used, for instance, when the total cost of travel is covered by a

single person or organization. The second would be a better

choice to ensure that no single person would travel too far.

This problem can be represented by a graph, where vertices

represent places and edges represent routes. To illustrate the

problem efficiently, the type of graph used is a strongly

connected, weighted, directed graph. Thus, the implementation

of Dijkstra’s algorithm to determine the best routes everyone

should travel is possible. Furthermore, to make things more

efficient, there will be slight modifications to the classic

Dijkstra’s algorithm, where the resulting calculation would

include all shortest paths from each vertex to every other vertex

in the graph.

II. GRAPH THEORY

A. Graph

Graphs are defined as mathematical structures which consist

of a set of vertices (also known as nodes or points) connected by

edges (also known as links or lines).

Formally [3], a graph can be written as G = (V, E) where:

- V is a set of vertices (also called nodes or points), and

- E is a set of edges (also called links or lines), which are

unordered pairs of vertices (that is, an edge is associated with

two distinct vertices).

Fig. 1. Example of a simple graph. Source:

https://www.geeksforgeeks.org/mathematics-graph-theory-

basics/

In this paper, places which serve as possible meeting points

are represented by vertices, and routes connecting these places

are represented by weighted edges.

B. Directed Graph

Graphs can be further classified into directed or undirected

graphs. A directed graph or a digraph is a graph in which edges

have orientations.

An edge directed from vertex A to B has a tail and a head,

where A is the tail of the edge and B the head of the edge. A and

B are called the endpoints of the edge. In a directed graph, a

loop, which is an edge directed from a vertex to itself, is not

allowed [3].

Fig. 2. Example of a directed graph. Source:

https://en.wikipedia.org/wiki/Graph_theory#/media/File:Direct

ed.svg

https://www.geeksforgeeks.org/mathematics-graph-theory-basics/
https://www.geeksforgeeks.org/mathematics-graph-theory-basics/
https://en.wikipedia.org/wiki/Graph_theory#/media/File:Directed.svg
https://en.wikipedia.org/wiki/Graph_theory#/media/File:Directed.svg

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

As opposed to undirected graphs, representing the problem

discussed in this paper with directed graphs is more convenient

and appropriate, as the route from place A to place B may differ

from the route from place B to place A. With directed graphs,

both routes may be represented with different edges with

different orientations, so as not to confuse the two. This setting

is not possible using an undirected graph.

C. Weighted Graph

Graphs can also be classified by their weight. A weighted

graph is categorized by the existence of a numerical weight in

each edge. These weights may represent various things such as

the cost, length, or preference of each edge. A weighted graph is

therefore a special type of labeled graph in which the labels are

numbers, usually positive but may also be negative [4].

Fig. 3. Example of a weighted graph. Source:

https://algorithms.tutorialhorizon.com/weighted-graph-

implementation-java/

In this paper, the weights assigned to each edge portray the

distance or the cost which is needed to travel the road between

two places. This weight is crucial since the goal of the algorithm

is to find a place where the cost of travel for all parties is

minimized.

C. Graph Terminology

There are a few graph terminologies used in this paper to

describe graphs, which are listed below [5].

1. Adjacency

Two vertices are said to be adjacent when they are

directly connected.

2. Incidence

For any edge e = (v1, v2), e is incident with vertex v1, or e

is incident with vertex v2.

3. Isolated Vertex

An isolated vertex is any vertex which has no incident

edge.

Fig. 4. Vertex 5 is an isolated vertex. Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

020-2021/Graf-2020-Bagian1.pdf

4. Null Graph (Empty Graph)

A graph is said to be a null graph when it is comprised

of an empty set.

Fig. 5. Example of a null graph. Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

020-2021/Graf-2020-Bagian1.pdf

5. Degree

The degree of a certain vertex is the count of incident

edges of the said vertex.

6. Path

A path from starting vertex v0 to target vertex vn is a

sequence of alternating vertices and edges such that each

successive vertex is connected by the edge. The length of

a path is the number of edges in the path.

7. Cycle (Circuit)

A cycle or a circuit is a path that starts and ends with the

same vertex.

8. Connectedness

Two vertices v0 and vn is said to be connected if there is a

path from v0 to vn. A graph is connected when for every

pair of vertices vi and vj, there exists a path from vi to vj.

If not, the graph is called a disconnected graph. In a

directed graph, there are two kinds of connectedness:

weakly connected and strongly connected. Two vertices

u and v are called strongly connected if there exists a path

from u to v and also a path from v to u. A connected

directed graph is called strongly connected when all pairs

of vertices are strongly connected. Otherwise, the graph

is weakly connected.

Fig. 6. A strongly connected graph (left) and a weakly

connected graph (right). Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

020-2021/Graf-2020-Bagian1.pdf

9. Subgraph

A Subgraph is a subset of vertices and edges in a graph.

10. Spanning Subgraph

A Spanning subgraph is a special type of subgraph which

consists of all the vertices.

https://algorithms.tutorialhorizon.com/weighted-graph-implementation-java/
https://algorithms.tutorialhorizon.com/weighted-graph-implementation-java/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

D. Graph Representation

A graph may be represented in various ways, three of which

are listed below [6].

1. Adjacency Matrix

A = [aij],

1, if vertex i and j are adjacent

aij = {

0, if vertex i and j are not adjacent

Fig. 7. Examples of adjacency matrices. Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

020-2021/Graf-2020-Bagian2.pdf

2. Incidency Matrix

A = [aij],

1, if vertex i and edge j are incident

aij = {

0, if vertex i and edge j are not incident

Fig. 8. Examples of incidency matrix. Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

020-2021/Graf-2020-Bagian2.pdf

3. Adjacency List

For each vertex i, all vertices which are adjacent to i are

listed.

Fig. 9. Examples of adjacency list. Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2

020-2021/Graf-2020-Bagian2.pdf

III. DIJKSTRA’S ALGORITHM

Created by computer scientist Edsger W. Dijkstra in 1956,

Dijkstra’s algorithm is an algorithm used to calculate the

shortest or lowest-cost path between two points in a weighted

graph. This algorithm is designed for weighted graphs which

edges have non-negative weights. Dijkstra’s algorithm is widely

used in network routing protocols and geographical maps

[7][8][9].

Even though the original purpose of the algorithm is to

determine the shortest path from one vertex to another,

Dijkstra’s algorithm, as a whole, automatically calculates the

cheapest paths from one vertex to every other vertex in the graph

[10].

Dijkstra’s algorithm works by first determining the initial or

starting vertex and setting it as an anchor. The algorithm works

in these steps.

1. All vertices are marked unvisited and stored in a set

called the unvisited set.

2. Every vertex is assigned a tentative distance value. The

distance from the starting vertex to itself is set to zero,

whereas to every other vertex is set to infinity. The

tentative distance of a vertex v is the length of the

shortest path between the starting vertex and the vertex

v calculated so far. Initially, there are no known paths

from the starting vertex to any other vertex. Therefore,

the tentative distances of all vertices (except for the

starting vertex itself) are set to infinity.

3. The algorithm begins by visiting the starting vertex and

marking it as the current vertex.

4. For the current vertex, all its unvisited adjacent

vertices’ tentative distances are calculated through the

current node. The newly calculated tentative distance

is then compared to the current assigned tentative

distance. Then, the algorithm keeps the smaller of the

two.

5. After all unvisited adjacent vertices are evaluated, the

current node is marked as visited and removed from the

unvisited set. A visited vertex will not be checked

again.

6. The vertex which is marked with the smallest tentative

distance is selected from the unvisited set and steps 4-

6 are repeated until a stop condition is met.

7. There are two conditions when the algorithm stops

depending on the goal:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

1. When calculating the shortest path between

one vertex to another, the algorithm stops

when the destination vertex has been reached.

2. When calculating the shortest path between

one vertex and all other vertices, the algorithm

stops when the smallest tentative distance

among the vertices in the unvisited set is

infinity. This means that there is no

connection between the initial vertex and the

remaining unvisited vertices.

8. When the stop condition is met, the algorithm would

have returned the shortest paths between the starting

point and every other vertex in the graph (unless the

goal is to find the shortest path between one vertex with

another, which in this case the algorithm is stopped

early).

Fig. 10. A flowchart of Dijkstra’s algorithm. Source:

https://www.researchgate.net/figure/Improved-Dijkstra-

algorithm-flowchart_fig3_348091761

IV. REPRESENTATION OF THE OPTIMAL MEETING

POINT PROBLEM USING WEIGHTED DIRECTED GRAPH

Suppose there are five people living in five different cities

(Atlanta, Boston, Chicago, Denver, and El Paso) who want to

decide on a city to meet with the minimal plane ticket cost. The

ticket costs are listed below.

Table 1. Plane ticket prices for this scenario

From To Price

Atlanta Boston $190

Atlanta Chicago $250

Boston Atlanta $200

Boston Chicago $80

Boston Denver $150

Chicago Boston $90

Chicago Denver $80

Denver El Paso $120

El Paso Chicago $120

El Paso Denver $130

Each city will be represented by a vertex, while the costs of

plane tickets will be represented by the weight of directed edges

between the vertices.

Fig. 11. A graph representation of plane ticket costs. Source:

Author

This graph will then be represented in a format that can be

read by the program. Because the point of interest is the inbound

edges, the representation should revolve around the inbound

edges rather than the outbound edges like the classic Dijkstra

does. The representation below is written in the form of an

adjacency list.

Atlanta : Boston, 200

Boston : Atlanta, 190; Chicago, 90

Chicago : Atlanta, 250; Boston, 80; El Paso, 120

Denver : Boston, 150; Chicago, 40; El Paso, 130

El Paso : Denver, 120

This list means there is one inbound edge going to Atlanta

from Boston that costs $200, two inbound edges to Boston from

Atlanta and Chicago, and so on.

V. THE USE OF MODIFIED DIJKSTRA’S ALGORITHM IN

CALCULATING AN OPTIMAL MEETING POINT

The first step in determining the optimal meeting point of a

graph is to ensure the connectivity of the graph. A suitable

meeting point can only be obtained if the resulting graph

representation is strongly connected, which means people can

travel from one city to another. If the resulting graph is not

connected or weakly connected, no suitable meeting point can

be derived, and the program terminates. The above example is a

strongly connected graph.

Every vertex is then assigned a tentative price value, which is

listed in the table below. The first row represents the initial city,

and the first column represents the destination city. The tentative

price value assigned to any city from itself is zero, while the

tentative price value to any city from all other cities are infinity.

https://www.researchgate.net/figure/Improved-Dijkstra-algorithm-flowchart_fig3_348091761
https://www.researchgate.net/figure/Improved-Dijkstra-algorithm-flowchart_fig3_348091761

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

Table 2. Initial tentative distance value

 Atlanta Boston Chicago Denver El Paso

Atlanta 0 ∞ ∞ ∞ ∞

Boston ∞ 0 ∞ ∞ ∞

Chicago ∞ ∞ 0 ∞ ∞

Denver ∞ ∞ ∞ 0 ∞

El Paso ∞ ∞ ∞ ∞ 0

Next, an arbitrary starting point is chosen. In this example,

Atlanta shall be picked as the starting city. Like in classic

Dijkstra’s algorithm, the starting city is first set to be the current

city and marked visited.

Unvisited cities need to be kept track. For efficiency, a

priority queue may be used in code since the next visited city is

the city cheapest to the visited cities.

For each time a city is visited, all inbound edges are inspected

and compared to the list of cheapest prices which has already

been discovered.

In the first step, the cheapest price to Atlanta from Boston is

discovered, which is $200. This price is added to the tentative

price table and Boston is added to the unvisited cities priority

queue.

Fig. 12. Step 1: Atlanta. Source: Author

Table 3. Step 1: Atlanta

 Atlanta Boston Chicago Denver El Paso

Atlanta 0 200 ∞ ∞ ∞

Boston ∞ 0 ∞ ∞ ∞

Chicago ∞ ∞ 0 ∞ ∞

Denver ∞ ∞ ∞ 0 ∞

El Paso ∞ ∞ ∞ ∞ 0

After all adjacent cities have been checked, in this case only

Boston, the algorithm moves on to the next unvisited city.

Checking the unvisited cities queue, the next destination would

be Boston.

After marking Boston as visited, the inbound edges are

checked. Boston has two inbound edges, which are from Atlanta

($190) and from Chicago ($90). These prices are still the

cheapest to Boston, so they are added to the cheapest prices

table, replacing the infinity marks.

In this modified algorithm, Atlanta should also be taken into

account. Chicago can get to Atlanta through Boston. Therefore,

Chicago’s price is calculated. The price to Atlanta from Chicago

through Boston is $90 + $190, which is $290. Comparing this

value to the value in the table (infinity), this value is cheaper.

Therefore, $290 is also updated as the price to Atlanta from

Chicago. This marks the end of step 2.

Fig. 13. Step 2: Boston. Source: Author

Table 4. Step 2: Boston

 Atlanta Boston Chicago Denver El Paso

Atlanta 0 200 290 ∞ ∞

Boston 190 0 90 ∞ ∞

Chicago ∞ ∞ 0 ∞ ∞

Denver ∞ ∞ ∞ 0 ∞

El Paso ∞ ∞ ∞ ∞ 0

Again, the unvisited cities queue is checked. There is one

discovered but unvisited city, which is Chicago. The algorithm

then moves on to Chicago.

Similar to the first and second steps, all inbound edges to

Chicago are examined. In this case, there are three inbound

edges, which are from Atlanta ($250), Boston ($80), and El Paso

($120). All prices through Chicago are calculated and the

cheapest prices table is updated.

Fig. 14. Step 3: Chicago. Source: Author

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

Table 5. Step 3: Chicago

 Atlanta Boston Chicago Denver El Paso

Atlanta 0 200 290 ∞ 410

Boston 190 0 90 ∞ 210

Chicago 250 80 0 ∞ 120

Denver ∞ ∞ ∞ 0 ∞

El Paso ∞ ∞ ∞ ∞ 0

The next city to visit is El Paso. There is only one inbound

edge, which is from Denver and costs $210. All prices through

El Paso are calculated and compared with the values in the

cheapest prices table. If any is found to be cheaper, the table is

updated.

Fig. 15. Step 4: El Paso. Source: Author

Table 6. Step 4: El Paso

 Atlanta Boston Chicago Denver El Paso

Atlanta 0 200 290 530 410

Boston 190 0 90 330 210

Chicago 250 80 0 240 120

Denver ∞ ∞ ∞ 0 ∞

El Paso ∞ ∞ ∞ 120 0

The last unvisited city in this case is Denver. Checking all

three inbound edges, the cheapest prices table is updated.

Fig. 16. Step 5: Denver. Source: Author

Table 7. Step 5: Denver

 Atlanta Boston Chicago Denver El Paso

Atlanta 0 200 290 530 410

Boston 190 0 90 330 210

Chicago 250 80 0 240 120

Denver ∞ 150 40 0 130

El Paso ∞ ∞ ∞ 120 0

Since all cities have been visited, the first loop has been

completed. In the classic Dijkstra’s algorithm, the program

would have stopped here. However, as apparent from the table

of cheapest prices that has been accumulated, some of the cells

have not been filled yet (the value is still infinity) even though

it is known that each vertex has at least a single path to any other

vertex since the graph has been established as a strongly

connected graph.

To fill in the missing cells as well as update the current

cheapest prices table with any path that will be discovered to be

cheaper, the program loops one more time with the same order

as the first loop (Atlanta, Boston, Chicago, El Paso, Denver).

The comparison algorithm is also the same. The resulting table

is shown below.

Table 8. Final result

 Atlanta Boston Chicago Denver El Paso

Atlanta 0 200 290 530 410

Boston 190 0 90 330 210

Chicago 250 80 0 240 120

Denver 290 120 40 0 130

El Paso 410 240 160 120 0

After all cheapest paths between every vertex are known, the

calculation to determine the optimal meeting point can begin.

There are two types of minimizing cost that is being studied

in this paper. The first is to determine the optimal meeting point

based on the city that has the minimum total cost from all other

cities, and the second one is to decide based on the minimum

maximum-cost of each city, so that no one person should travel

too expensively.

In the first method, the costs from each city are summed and

compared. The calculated total costs to meet in each city are

listed below.

Atlanta : $1,430

Boston : $820

Chicago : $690

Denver : $580

El Paso : $930

Therefore, using the first method, the most suitable meeting

point would be Denver, with a total cost of $580.

The second method proves to be simpler. The only thing

needed to be done is to compare the maximum costs of each city,

which are listed below.

Atlanta : $530

Boston : $330

Chicago : $250

Denver : $290

El Paso : $410

The resulting optimal meeting point calculated using the

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

second method differs from the first one, as the cost from

Atlanta to Denver is too expensive. Therefore, Chicago is the

best choice if no one person should travel too expensively. The

maximum cost needed to travel to Chicago is $250, which is the

cost from Atlanta to Chicago.

VI. CONCLUSION

A modification to the classic Dijkstra’s algorithm could be

used to determine an optimal meeting point in a weighted

directed graph. However, to use this modification, the graph

must be a strongly connected graph, a precondition which does

not exist in the classic Dijkstra’s algorithm.

The modification involves checking the shortest path from all

vertices instead of just one vertex for every pass. In code, a

nested loop may be utilized to achieve this. In addition to this, a

second loop similar to the first must be completed in order to

complete the check after all vertices are visited.

The result of this modification is a set of data of all known

shortest paths from each vertex to every other vertex, which can

be used in a variety of schemes, not only to determine an optimal

meeting point.

VII. APPENDIX

The following is a python code of the modified Dijkstra’s

algorithm used in this paper. The full code may be accessed from

https://github.com/FelineJTD/Optimal-Meeting-Point-using-

Dijkstras-Algorithm.

def modifiedDijkstra(vertices, start_vertex):

 # a function that requires a vertices

(dictionary) and a start_vertex (string)

 # and returns cheapest_costs (dictionary)

and previous_stopover_vertex (dictionary)

 # through modified Dijkstra's algorithm

which calculates all cheapest routes

 # to every city from every city (or vice

versa, depending on the vertices data)

 # variables to be returned

 cheapest_costs = {}

 previous_stopover_vertex = {}

 # variables to hold temporary states while

Dijkstra runs

 unvisited_vertices = PriorityQueue() # a

priority queue, to be used in initial loop

 revisit_vertices = [] # a queue, containing

the same elements with the same order, to be

used in secondary loop

 visited_vertices = {}

 # enqueue

 unvisited_vertices.insert(start_vertex)

 # initial loop

 while (not unvisited_vertices.isEmpty()):

 # initiation

 # dequeue

 curr_vertex = unvisited_vertices.delete()

 revisit_vertices.append(curr_vertex)

 cheapest_costs[curr_vertex] = {}

 previous_stopover_vertex[curr_vertex] = {}

 cheapest_costs[curr_vertex][curr_vertex] =

0

 visited_vertices[curr_vertex] = True

 for adj_vertex, price in

vertices[curr_vertex].items(): # iterate each

adj vertices

 # add vertex to queues if not yet

visited

 if (adj_vertex not in visited_vertices):

 unvisited_vertices.insert(adj_vertex)

 for vv in visited_vertices.keys():

 try:

 # if there is a cheapest cost

through curr_vertex

 price_through_current_vertex =

cheapest_costs[vv][curr_vertex] + price

 try:

 # compare the prices if there is

an existing one

 if(cheapest_costs[vv][adj_vertex]

> price_through_current_vertex):

 cheapest_costs[vv][adj_vertex] =

price_through_current_vertex

 previous_stopover_vertex[vv][adj

_vertex] = curr_vertex

 except:

 # price not yet initialized

 cheapest_costs[vv][adj_vertex] =

price_through_current_vertex

 previous_stopover_vertex[vv][adj_v

ertex] = curr_vertex

 except:

 pass

 # revisiting vertices

 # this secondary loop is important so that

all vertices 'visits' all vertices, currently

only the start_vertex has done so

https://github.com/FelineJTD/Optimal-Meeting-Point-using-Dijkstras-Algorithm
https://github.com/FelineJTD/Optimal-Meeting-Point-using-Dijkstras-Algorithm

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

 for p in range(len(revisit_vertices)):

 curr_vertex = revisit_vertices[p]

 for q in range(p+1,len(revisit_vertices)):

 vv = revisit_vertices[q]

 for adj_vertex, price in

vertices[revisit_vertices[p]].items(): #

iterate each adj vertices

 try:

 price_through_current_vertex =

cheapest_costs[vv][curr_vertex] + price

 try:

 if(cheapest_costs[vv][adj_vertex]

> price_through_current_vertex):

 cheapest_costs[vv][adj_vertex] =

price_through_current_vertex

 previous_stopover_vertex[vv][adj

_vertex] = curr_vertex

 except:

 cheapest_costs[vv][adj_vertex] =

price_through_current_vertex

 previous_stopover_vertex[vv][adj_v

ertex] = curr_vertex

 except:

 pass

 return(cheapest_costs,

previous_stopover_vertex)

VIII. ACKNOWLEDGMENT

The author is very grateful to Mr. Rinaldi Munir for his

guidance and lessons throughout the semester, which insights

have been invaluable to the completion of this project. Also, the

author would like to thank a friend who has tested and reviewed

the code for this paper.

REFERENCES

[1] Meeting and Convention Planners. (2009, December 17). U.S. Bureau of

Labor Statistics. Retrieved April 21, 2010.

[2] narek Bojikian (https://cs.stackexchange.com/users/83933/narek-

bojikian), Optimal meeting point, URL (version: 2018-07-08):

https://cs.stackexchange.com/q/94024

[3] Bender, Edward A.; Williamson, S. Gill (2010). Lists, Decisions and
Graphs. With an Introduction to Probability

[4] Weisstein, Eric W. "Weighted Graph." From MathWorld--A Wolfram
Web Resource. https://mathworld.wolfram.com/WeightedGraph.html

[5] Munir, Rinaldi (2020). Graf (Bagian 1).

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-
2020-Bagian1.pdf

[6] Munir, Rinaldi (2020). Graf (Bagian 2).

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-
2020-Bagian2.pdf

[7] Richards, Hamilton. "Edsger Wybe Dijkstra". A.M. Turing Award.

Association for Computing Machinery. Retrieved 16 October 2017. At the
Mathematical Centre a major project was building the ARMAC computer.

For its official inauguration in 1956, Dijkstra devised a program to solve a

problem interesting to a nontechnical audience: Given a network of roads

connecting cities, what is the shortest route between two designated
cities?”

[8] Frana, Phil (August 2010). "An Interview with Edsger W. Dijkstra".

Communications of the ACM. 53 (8): 41–47.
doi:10.1145/1787234.1787249

[9] Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs"

(PDF). Numerische Mathematik. 1: 269–271. doi:10.1007/BF01386390.
S2CID 123284777

[10] Wengrow, Jay (2020). A Common-Sense Guide to Data Structures and

Algorithms, Second Edition: Level Up Your Core Programming Skills.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 14 Desember 2020

Felicia Sutandijo

13520050

http://www.bls.gov/oco/ocos298.htm
https://en.wikipedia.org/wiki/U.S._Bureau_of_Labor_Statistics
https://en.wikipedia.org/wiki/U.S._Bureau_of_Labor_Statistics
https://cs.stackexchange.com/q/94024
https://books.google.com/books?id=vaXv_yhefG8C
https://books.google.com/books?id=vaXv_yhefG8C
https://mathworld.wolfram.com/about/author.html
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/WeightedGraph.html
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian2.pdf
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
https://doi.org/10.1145%2F1787234.1787249
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F1787234.1787249
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2FBF01386390
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:123284777

